3.3.43 \(\int \sec (a+b x) (d \tan (a+b x))^{3/2} \, dx\) [243]

Optimal. Leaf size=80 \[ -\frac {d^2 F\left (\left .a-\frac {\pi }{4}+b x\right |2\right ) \sec (a+b x) \sqrt {\sin (2 a+2 b x)}}{3 b \sqrt {d \tan (a+b x)}}+\frac {2 d \sec (a+b x) \sqrt {d \tan (a+b x)}}{3 b} \]

[Out]

1/3*d^2*(sin(a+1/4*Pi+b*x)^2)^(1/2)/sin(a+1/4*Pi+b*x)*EllipticF(cos(a+1/4*Pi+b*x),2^(1/2))*sec(b*x+a)*sin(2*b*
x+2*a)^(1/2)/b/(d*tan(b*x+a))^(1/2)+2/3*d*sec(b*x+a)*(d*tan(b*x+a))^(1/2)/b

________________________________________________________________________________________

Rubi [A]
time = 0.06, antiderivative size = 80, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.210, Rules used = {2691, 2694, 2653, 2720} \begin {gather*} \frac {2 d \sec (a+b x) \sqrt {d \tan (a+b x)}}{3 b}-\frac {d^2 \sqrt {\sin (2 a+2 b x)} \sec (a+b x) F\left (\left .a+b x-\frac {\pi }{4}\right |2\right )}{3 b \sqrt {d \tan (a+b x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sec[a + b*x]*(d*Tan[a + b*x])^(3/2),x]

[Out]

-1/3*(d^2*EllipticF[a - Pi/4 + b*x, 2]*Sec[a + b*x]*Sqrt[Sin[2*a + 2*b*x]])/(b*Sqrt[d*Tan[a + b*x]]) + (2*d*Se
c[a + b*x]*Sqrt[d*Tan[a + b*x]])/(3*b)

Rule 2653

Int[1/(Sqrt[cos[(e_.) + (f_.)*(x_)]*(b_.)]*Sqrt[(a_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist[Sqrt[Sin[2*
e + 2*f*x]]/(Sqrt[a*Sin[e + f*x]]*Sqrt[b*Cos[e + f*x]]), Int[1/Sqrt[Sin[2*e + 2*f*x]], x], x] /; FreeQ[{a, b,
e, f}, x]

Rule 2691

Int[((a_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[b*(a*Sec[e +
 f*x])^m*((b*Tan[e + f*x])^(n - 1)/(f*(m + n - 1))), x] - Dist[b^2*((n - 1)/(m + n - 1)), Int[(a*Sec[e + f*x])
^m*(b*Tan[e + f*x])^(n - 2), x], x] /; FreeQ[{a, b, e, f, m}, x] && GtQ[n, 1] && NeQ[m + n - 1, 0] && Integers
Q[2*m, 2*n]

Rule 2694

Int[sec[(e_.) + (f_.)*(x_)]/Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[Sqrt[Sin[e + f*x]]/(Sqrt[Co
s[e + f*x]]*Sqrt[b*Tan[e + f*x]]), Int[1/(Sqrt[Cos[e + f*x]]*Sqrt[Sin[e + f*x]]), x], x] /; FreeQ[{b, e, f}, x
]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rubi steps

\begin {align*} \int \sec (a+b x) (d \tan (a+b x))^{3/2} \, dx &=\frac {2 d \sec (a+b x) \sqrt {d \tan (a+b x)}}{3 b}-\frac {1}{3} d^2 \int \frac {\sec (a+b x)}{\sqrt {d \tan (a+b x)}} \, dx\\ &=\frac {2 d \sec (a+b x) \sqrt {d \tan (a+b x)}}{3 b}-\frac {\left (d^2 \sqrt {\sin (a+b x)}\right ) \int \frac {1}{\sqrt {\cos (a+b x)} \sqrt {\sin (a+b x)}} \, dx}{3 \sqrt {\cos (a+b x)} \sqrt {d \tan (a+b x)}}\\ &=\frac {2 d \sec (a+b x) \sqrt {d \tan (a+b x)}}{3 b}-\frac {\left (d^2 \sec (a+b x) \sqrt {\sin (2 a+2 b x)}\right ) \int \frac {1}{\sqrt {\sin (2 a+2 b x)}} \, dx}{3 \sqrt {d \tan (a+b x)}}\\ &=-\frac {d^2 F\left (\left .a-\frac {\pi }{4}+b x\right |2\right ) \sec (a+b x) \sqrt {\sin (2 a+2 b x)}}{3 b \sqrt {d \tan (a+b x)}}+\frac {2 d \sec (a+b x) \sqrt {d \tan (a+b x)}}{3 b}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.
time = 0.32, size = 69, normalized size = 0.86 \begin {gather*} \frac {2 d \cos (a+b x) \left (\sec ^2(a+b x)-\, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};-\tan ^2(a+b x)\right ) \sqrt {\sec ^2(a+b x)}\right ) \sqrt {d \tan (a+b x)}}{3 b} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sec[a + b*x]*(d*Tan[a + b*x])^(3/2),x]

[Out]

(2*d*Cos[a + b*x]*(Sec[a + b*x]^2 - Hypergeometric2F1[1/4, 1/2, 5/4, -Tan[a + b*x]^2]*Sqrt[Sec[a + b*x]^2])*Sq
rt[d*Tan[a + b*x]])/(3*b)

________________________________________________________________________________________

Maple [A]
time = 0.25, size = 188, normalized size = 2.35

method result size
default \(\frac {\left (-1+\cos \left (b x +a \right )\right ) \left (\sqrt {\frac {-1+\cos \left (b x +a \right )}{\sin \left (b x +a \right )}}\, \sqrt {\frac {\cos \left (b x +a \right )-1+\sin \left (b x +a \right )}{\sin \left (b x +a \right )}}\, \sqrt {-\frac {\cos \left (b x +a \right )-1-\sin \left (b x +a \right )}{\sin \left (b x +a \right )}}\, \cos \left (b x +a \right ) \sin \left (b x +a \right ) \EllipticF \left (\sqrt {-\frac {\cos \left (b x +a \right )-1-\sin \left (b x +a \right )}{\sin \left (b x +a \right )}}, \frac {\sqrt {2}}{2}\right )+\cos \left (b x +a \right ) \sqrt {2}-\sqrt {2}\right ) \left (\cos \left (b x +a \right )+1\right )^{2} \left (\frac {d \sin \left (b x +a \right )}{\cos \left (b x +a \right )}\right )^{\frac {3}{2}} \sqrt {2}}{3 b \sin \left (b x +a \right )^{5}}\) \(188\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(b*x+a)*(d*tan(b*x+a))^(3/2),x,method=_RETURNVERBOSE)

[Out]

1/3/b*(-1+cos(b*x+a))*(((-1+cos(b*x+a))/sin(b*x+a))^(1/2)*((cos(b*x+a)-1+sin(b*x+a))/sin(b*x+a))^(1/2)*(-(cos(
b*x+a)-1-sin(b*x+a))/sin(b*x+a))^(1/2)*cos(b*x+a)*sin(b*x+a)*EllipticF((-(cos(b*x+a)-1-sin(b*x+a))/sin(b*x+a))
^(1/2),1/2*2^(1/2))+cos(b*x+a)*2^(1/2)-2^(1/2))*(cos(b*x+a)+1)^2*(d*sin(b*x+a)/cos(b*x+a))^(3/2)/sin(b*x+a)^5*
2^(1/2)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(b*x+a)*(d*tan(b*x+a))^(3/2),x, algorithm="maxima")

[Out]

integrate((d*tan(b*x + a))^(3/2)*sec(b*x + a), x)

________________________________________________________________________________________

Fricas [C] Result contains complex when optimal does not.
time = 0.09, size = 95, normalized size = 1.19 \begin {gather*} \frac {\sqrt {i \, d} d \cos \left (b x + a\right ) {\rm ellipticF}\left (\cos \left (b x + a\right ) + i \, \sin \left (b x + a\right ), -1\right ) + \sqrt {-i \, d} d \cos \left (b x + a\right ) {\rm ellipticF}\left (\cos \left (b x + a\right ) - i \, \sin \left (b x + a\right ), -1\right ) + 2 \, d \sqrt {\frac {d \sin \left (b x + a\right )}{\cos \left (b x + a\right )}}}{3 \, b \cos \left (b x + a\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(b*x+a)*(d*tan(b*x+a))^(3/2),x, algorithm="fricas")

[Out]

1/3*(sqrt(I*d)*d*cos(b*x + a)*ellipticF(cos(b*x + a) + I*sin(b*x + a), -1) + sqrt(-I*d)*d*cos(b*x + a)*ellipti
cF(cos(b*x + a) - I*sin(b*x + a), -1) + 2*d*sqrt(d*sin(b*x + a)/cos(b*x + a)))/(b*cos(b*x + a))

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \left (d \tan {\left (a + b x \right )}\right )^{\frac {3}{2}} \sec {\left (a + b x \right )}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(b*x+a)*(d*tan(b*x+a))**(3/2),x)

[Out]

Integral((d*tan(a + b*x))**(3/2)*sec(a + b*x), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(b*x+a)*(d*tan(b*x+a))^(3/2),x, algorithm="giac")

[Out]

integrate((d*tan(b*x + a))^(3/2)*sec(b*x + a), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {{\left (d\,\mathrm {tan}\left (a+b\,x\right )\right )}^{3/2}}{\cos \left (a+b\,x\right )} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*tan(a + b*x))^(3/2)/cos(a + b*x),x)

[Out]

int((d*tan(a + b*x))^(3/2)/cos(a + b*x), x)

________________________________________________________________________________________